Preparation and evaluation of some nanocarbon (NC) based composites for optoelectronic applications

Author:

Elhalawany Noha,Abdel-karim Amal M.,Saleeb Maher M.

Abstract

AbstractPolyaniline/nanocarbon (PANI/NC) nanocomposites have been prepared by in situ polymerization of aniline monomer in the presence of a stable colloidal solution of nanocarbon NC using ammonium persulfate as an initiator and silver ions (Ag+) as oxidizing agents to produce PANI/NC and PANI/NC/Ag2O nanocomposites, respectively. The morphological studies of the formed nanocomposites have been elucidated via transmission and scanning electron microscopes (TEM and SEM). Further characterization of the prepared nanocomposites has been done via infrared spectroscopy (IR), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), particle size distribution analysis (PSD), fluorescence microscope (FM), UV–VIS spectroscopy, and finally surface analysis. XRD results confirmed the presence of silver oxide Ag2O nanoparticles, and the obtained data is well matched with the JCPDS card number 76–1393 of silver oxide. XPS analyses have shown two prevailing characteristic peaks for Ag 3d5/2 and Ag 3d3/2 at 367.1 and 373 eV, respectively, representing Ag2O nanoparticles, which are matchable with the XRD analysis. The PSD analysis revealed that the sizes of the prepared nanocomposites are in the size range from 60 to 140 nm. The FM measurements showed luminescence from the prepared nanocomposites upon irradiation with different lights. This recommends that the fluorophores present in the prepared nanocomposites have the potential to both absorb and emit light. The AC conductivity and the dielectric permittivity of the obtained nanocomposites at room temperature and at different frequency ranges have been investigated. At higher frequency ranges, the maximum ac conductivity obtained was 1.06 × 10–2 and 2.5 × 10–2 S.Cm-1 for the PANI/NC and PANI/NC/Ag2O, respectively. As far as we know, these new nanocomposites with superior optical and electrical characteristics have not been described yet in the literature.

Funder

National Research Centre

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3