Classification of precipitation types in Poland using machine learning and threshold temperature methods

Author:

Pham Quoc Bao,Łupikasza Ewa,Łukasz Małarzewski

Abstract

AbstractThe phase in which precipitation falls—rainfall, snowfall, or sleet—has a considerable impact on hydrology and surface runoff. However, many weather stations only provide information on the total amount of precipitation, at other stations series are short or incomplete. To address this issue, data from 40 meteorological stations in Poland spanning the years 1966–2020 were utilized in this study to classify precipitation. Three methods were used to differentiate between rainfall and snowfall: machine learning (i.e., Random Forest), daily mean threshold air temperature, and daily wet bulb threshold temperature. The key findings of this study are: (i) the Random Forest (RF) method demonstrated the highest accuracy in rainfall/snowfall classification among the used approaches, which spanned from 0.90 to 1.00 across all stations and months; (ii) the classification accuracy provided by the mean wet bulb temperature and daily mean threshold air temperature approaches were quite similar, which spanned from 0.86 to 1.00 across all stations and months; (iii) Values of optimized mean threshold temperature and optimized wet bulb threshold temperature were determined for each of the 40 meteorological stations; (iv) the inclusion of water vapor pressure has a noteworthy impact on the RF classification model, and the removal of mean wet bulb temperature from the input data set leads to an improvement in the classification accuracy of the RF model. Future research should be conducted to explore the variations in the effectiveness of precipitation classification for each station.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3