Humidity sensing using Zn(1.6 − x)Na0.4CuxTiO4 spinel nanostructures

Author:

Mansour A. M.,Morsy Mohamed,El Nahrawy Amany M.,Abou Hammad Ali B.

Abstract

AbstractIn this paper, we present a humidity sensing material based on nanostructured Zn(1.6 − x)Na0.4CuxTiO4 spinel to enhance optical and sensitivity performance. Nano-porous of Zn (1.6 − x) Na0.4CuxTiO4 spinel were synthesized using sol gel reactions and calcined at 700 °C. The nanostructures of Zn(1.6 − x)Na0.4CuxTiO4 spinel underwent thorough characterization through multiple techniques. X-ray diffractometry (XRD) coupled with Rietveld refinement using FullProf software, transmission electron microscopy (TEM), Raman Spectroscopy, and optical analysis were employed to assess various aspects of the nanostructures. These techniques were utilized to determine the phase composition, particle size distribution, chemical bonding, and the tunable band gap of the nanostructures. The X-ray diffraction (XRD) analysis of Zn(1.6 − x)Na0.4CuxTiO4 samples revealed well-defined and prominent peaks, indicating a highly crystalline cubic spinel structure. The lattice parameter was decreased from 8.4401 to 8.4212 Å with increasing Cu content from 0 to 1.2 mol%. UV–visible diffuse reflectance spectra were employed to investigate the optical characteristics of copper-doped Zn1.6Na0.4TiO4. The applicability of Cu@NaZT spinel nanostructures in humidity sensors was evaluated at ambient conditions. The fabricated sensor was investigated in a wide span of humidity (11–97%). The examined sensor demonstrates a low hysteresis, excellent repeatability, fast response and recovery. The response and recovery times were estimated to be 20 s and 6 s respectively. The highest sensitivity was achieved at 200 Hz. The proposed sensor can be coupled easily with electronic devices as the humidity–impedance relationship is linear.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3