Validation and characterization of a novel blood–brain barrier platform for investigating traumatic brain injury

Author:

Bolden Christopher T.,Skibber Max A.,Olson Scott D.,Zamorano Rojas Miriam,Milewicz Samantha,Gill Brijesh S.,Cox Charles S.

Abstract

AbstractThe Blood–Brain Barrier (BBB) is a highly-selective physiologic barrier responsible for maintaining cerebral homeostasis. Innovative in vitro models of the BBB are needed to provide useful insights into BBB function with CNS disorders like traumatic brain injury (TBI). TBI is a multidimensional and highly complex pathophysiological condition that requires intrinsic models to elucidate its mechanisms. Current models either lack fluidic shear stress, or neglect hemodynamic parameters important in recapitulating the human in vivo BBB phenotype. To address these limitations in the field, we developed a fluid dynamic novel platform which closely mimics these parameters. To validate our platform, Matrigel-coated Transwells were seeded with brain microvascular endothelial cells, both with and without co-cultured primary human astrocytes and bone-marrow mesenchymal stem cells. In this article we characterized BBB functional properties such as TEER and paracellular permeability. Our platform demonstrated physiologic relevant decreases in TEER in response to an ischemic environment, while directly measuring barrier fluid fluctuation. These recordings were followed with recovery, implying stability of the model. We also demonstrate that our dynamic platform is responsive to inflammatory and metabolic cues with resultant permeability coefficients. These results indicate that this novel dynamic platform will be a valuable tool for evaluating the recapitulating BBB function in vitro, screening potential novel therapeutics, and establishing a relevant paradigm to evaluate the pathophysiology of TBI.

Funder

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3