Miniaturization re-establishes symmetry in the wing folding patterns of featherwing beetles

Author:

Petrov Pyotr N.,Farisenkov Sergey E.,Polilov Alexey A.

Abstract

AbstractMost microinsects have feather-like bristled wings, a state known as ptiloptery, but featherwing beetles (family Ptiliidae) are unique among winged microinsects in their ability to fold such wings. An asymmetrical wing folding pattern, found also in the phylogenetically related rove beetles (Staphylinidae), was ancestral for Ptiliidae. Using scanning electron, confocal laser scanning, and optical microscopy, high-speed video recording, and 3D reconstruction, we analyze in detail the symmetrical wing folding pattern and the mechanism of the folding and unfolding of the wings in Acrotrichis sericans (Coleoptera: Ptiliidae) and show how some of the smaller featherwing beetles have reverted to strict symmetry in their wing folding. The wings are folded in three phases by bending along four lines (with the help of wing folding patches on the abdominal tergites) and locked under the closed elytra; they unfold passively in two phases, apparently with the help of the elasticity provided by resilin unevenly distributed in the wing and of convexities forming in the cross-sections of the unfolding wing, making it stiffer. The minimum duration of folding is 3.5 s; unfolding is much more rapid (minimum duration lowest recorded in beetles, 0.038 s). The folding ratio of A. sericans is 3.31 (without setae), which is greater than in any beetle in which it has been measured. The symmetrical wing folding pattern found in A. sericans and in all of the smallest ptiliids, in which ptiloptery is especially pronounced, is the only known example of symmetry re-established during miniaturization. This direction of evolution is remarkable because miniaturization is known to result in various asymmetries, while in this case miniaturization was accompanied by reversal to symmetry, probably associated with the evolution of ptiloptery. Our results on the pattern and mechanisms of wing folding and unfolding can be used in robotics for developing miniature biomimetic robots: the mechanisms of wing folding and unfolding in Ptiliidae present a challenge to engineers who currently work at designing ever smaller flying robots and may eventually produce miniature robots with foldable wings.

Funder

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3