Implantable theranostic device for in vivo real-time NMR evaluation of drug impact in brain tumors

Author:

Deborne Justine,Benkhaled Imad,Bouchaud Véronique,Pinaud Noël,Crémillieux Yannick

Abstract

AbstractThe evaluation of the efficacy of a drug is a fundamental step in the development of new treatments or in personalized therapeutic strategies and patient management. Ideally, this evaluation should be rapid, possibly in real time, easy to perform and reliable. In addition, it should be associated with as few adverse effects as possible for the patient. In this study, we present a device designed to meet these goals for assessing therapeutic response. This theranostic device is based on the use of magnetic resonance imaging and spectroscopy for the diagnostic aspect and on the application of the convection-enhanced delivery technique for the therapeutic aspect. The miniaturized device is implantable and can be used in vivo in a target tissue. In this study, the device was applied to rodent glioma models with local administration of choline kinase inhibitor and acquisition of magnetic resonance images and spectra at 7 Tesla. The variations in the concentration of key metabolites measured by the device during the administration of the molecules demonstrate the relevance of the approach and the potential of the device.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3