Enhanced hydrogen evolution reaction activity through samarium-doped nickel phosphide (Ni2P) electrocatalyst

Author:

Shahroudi Ali,Habibzadeh Sajjad

Abstract

AbstractHydrogen evolution reaction (HER) stands out among conventional hydrogen production processes by featuring excellent advantages. However, the uncompetitive production cost due to the low energy efficiency has hindered its development, necessitating the introduction of cost-effective electrocatalysts. In this study, we introduced samarium doping as a high-potential approach to improve the electrocatalytic properties of nickel phosphide (Ni2P) for efficient HER. Samarium-doped Ni2P was synthesized via a facile two-step vapor–solid reaction technique. Different physical and electrochemical analyses showed that samarium doping significantly improved pure Ni2P characteristics, such as particle size, specific surface area, electrochemical hydrogen adsorption, intrinsic activity, electrochemical active surface area, and charge transfer ability in favor of HER. Namely, Ni2P doped with 3%mol of samarium (Sm0.03Ni2P) with a Tafel slope of 67.8 mV/dec. and overpotential of 130.6 mV at a current density of 10 mA/cm2 in 1.0 M KOH solution exhibited a notable performance, suggesting Sm0.03Ni2P and samarium doping as a remarkable electrocatalyst and promising promoter for efficient HER process, respectively.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3