Ixodes scapularis salivary gland microRNAs are differentially expressed during Powassan virus transmission

Author:

Hermance Meghan E.,Widen Steven G.,Wood Thomas G.,Thangamani SaravananORCID

Abstract

Abstract Successful tick feeding is facilitated by an assortment of pharmacologically-active factors in tick saliva that create an immunologically privileged micro-environment in the host’s skin. Through a process known as saliva-assisted transmission, bioactive tick salivary factors modulate the host environment, promoting transmission and establishment of a tick-borne pathogen. This phenomenon was previously demonstrated for Powassan virus (POWV), a North American tick-borne flavivirus that is the causative agent of a severe neuroinvasive disease in humans. Here, we sought to characterize the Ixodes scapularis salivary gland microRNAs (miRNAs) expressed during the earliest period of POWV transmission to a mammalian host. POWV-infected and uninfected I. scapularis females were fed on naïve mice for 1, 3, and 6 hours, and Illumina next generation sequencing was used to characterize the salivary gland miRNA expression profiles of POWV-infected versus uninfected ticks. 379 salivary miRNAs were detected, of which 338 are reported here as putative novel I. scapularis miRNAs. 35 salivary gland miRNAs were significantly up-regulated and 17 miRNAs were significantly down-regulated in response to POWV infection. To investigate the potential role of salivary gland miRNAs in POWV replication in-vitro, we transfected miRNA inhibitors into VeroE6 cells to profile temporal POWV replication in mammalian cells. Together, the small RNA sequencing data and the in vitro miRNA inhibition assay suggest that the differentially expressed tick salivary miRNAs could act in regulating POWV replication in host tissues.

Funder

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3