Internal short circuit detection in Li-ion batteries using supervised machine learning

Author:

Naha Arunava,Khandelwal Ashish,Agarwal Samarth,Tagade Piyush,Hariharan Krishnan S.,Kaushik Anshul,Yadu Ankit,Kolake Subramanya Mayya,Han Seongho,Oh Bookeun

Abstract

AbstractWith the proliferation of Li-ion batteries in smart phones, safety is the main concern and an on-line detection of battery faults is much wanting. Internal short circuit is a very critical issue that is often ascribed to be a cause of many accidents involving Li-ion batteries. A novel method that can detect the Internal short circuit in real time based on an advanced machine leaning approach, is proposed. Based on an equivalent electric circuit model, a set of features encompassing the physics of Li-ion cell with short circuit fault are identified and extracted from each charge-discharge cycle. The training feature set is generated with and without an external short-circuit resistance across the battery terminals. To emulate a real user scenario, internal short is induced by mechanical abuse. The testing feature set is generated from the battery charge-discharge data before and after the abuse. A random forest classifier is trained with the training feature set. The fault detection accuracy for the testing dataset is found to be more than 97%. The proposed algorithm does not interfere with the normal usage of the device, and the trained model can be implemented in any device for online fault detection.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3