Author:
Sun Yan,Wang Chang,Zheng Shuhang,Tao Xiao,Liu Xinyu,Li Yong,Wu Fei,Zheng Zhenrong
Abstract
AbstractOptical fiber bundle-based microendoscope, which is significant in clinical diagnosis and industrial detection, calls for miniaturization of the probe and high-resolution observation. Here, we propose a double-layer metasurface array borrowing the structures of insect compound eyes to meet both requirements instead of traditional optical components. Each unit in the array aims for an incident field of view, focusing light at the center of the fiber end face with no chromatic aberration at the wavelengths of 470 nm, 530 nm and 630 nm. The metasurface array is composed of a series of isotropic TiO2 nanopillars which are special selected after considering resonance mode and angular dispersion characteristics, etched on both sides of a silica substrate, with the individual functions of deflecting and focusing. In image space, numerical aperture (NA) is 0.287 and the particular layout of two layers achieve zero telecentricity theoretically, which meet the requirements of optical fiber bundle coupling. A unit for incident angle of 20° is shown to validate our design approach numerically, which obtains a focused spot close to the diffraction limit. The compact and ultrathin metasurface could greatly reduce the size of the probe in optical fiber bundle based microendoscope while ensuring the imaging quality.
Funder
Beijing Municipal Science and Technology Commission
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献