Performance of a novel risk model for deep sternal wound infection after coronary artery bypass grafting

Author:

Orlandi Bianca Maria Maglia,Mejia Omar Asdrúbal Vilca,Sorio Jennifer Loría,de Barros e Silva Pedro,Oliveira Marco Antonio Praça,Nakazone Marcelo Arruda,Tiveron Marcos Gradim,Campagnucci Valquíria Pelliser,Lisboa Luiz Augusto Ferreira,Zubelli Jorge,Normand Sharon-Lise,Jatene Fabio Biscegli

Abstract

AbstractClinical prediction models for deep sternal wound infections (DSWI) after coronary artery bypass graft (CABG) surgery exist, although they have a poor impact in external validation studies. We developed and validated a new predictive model for 30-day DSWI after CABG (REPINF) and compared it with the Society of Thoracic Surgeons model (STS). The REPINF model was created through a multicenter cohort of adults undergoing CABG surgery (REPLICCAR II Study) database, using least absolute shrinkage and selection operator (LASSO) logistic regression, internally and externally validated comparing discrimination, calibration in-the-large (CL), net reclassification improvement (NRI) and integrated discrimination improvement (IDI), trained between the new model and the STS PredDeep, a validated model for DSWI after cardiac surgery. In the validation data, c-index = 0.83 (95% CI 0.72–0.95). Compared to the STS PredDeep, predictions improved by 6.5% (IDI). However, both STS and REPINF had limited calibration. Different populations require independent scoring systems to achieve the best predictive effect. The external validation of REPINF across multiple centers is an important quality improvement tool to generalize the model and to guide healthcare professionals in the prevention of DSWI after CABG surgery.

Funder

FAPESP CAPPesq

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3