The effect of stretch–shortening magnitude and muscle–tendon unit length on performance enhancement in a stretch–shortening cycle

Author:

Groeber Martin,Stafilidis Savvas,Baca Arnold

Abstract

AbstractStretch-induced residual force enhancement (rFE) is associated with increased performance in a stretch–shortening cycle (SSC). Although the influence of different range of motions and muscle–tendon unit lengths has been investigated in pure stretch-hold experiments in vivo, the contribution to a SSC movement in human muscles remains unclear. In two sessions, 25 healthy participants performed isometric reference (ISO), shortening hold (SHO) and SSC contractions on an isokinetic dynamometer. We measured the net knee-joint torque, rotational mechanical work, knee kinematics and fascicle behavior (m. vastus lateralis) of the upper right leg. In session 1 the SHO- and SSC-magnitude was changed respectively (SHO: 50°–20°, 80°–20° and 110°–20°; SSC: 20°–50°–20°, 20°–80°–20° and 20°–110°–20°) and in session 2 the muscle–tendon unit length (SHO: 50°–20°, 80°–50° and 110°–80°; SSC: 20°–50°–20°, 50°–80°–50° and 80°–110°–80°; straight leg = 0°). In both sessions, rotational work was significantly (p < 0.05) increased in the SSC compared to the SHO contractions (in the range of 8.1–17.9%). No significant difference of joint torque was found in the steady-state for all SSC-magnitudes compared to the corresponding SHO contractions in session 1. In session 2, we found only significantly (p < 0.05) less depressed joint torque in the SSC at the longest muscle–tendon unit length compared to the corresponding SHO condition, without any differences in knee kinematics and fascicle behavior. Therefore, the physiological relevance of rFE might be particularly important for movements at greater muscle–tendon unit lengths.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3