Humans rely more on algorithms than social influence as a task becomes more difficult

Author:

Bogert Eric,Schecter Aaron,Watson Richard T.

Abstract

AbstractAlgorithms have begun to encroach on tasks traditionally reserved for human judgment and are increasingly capable of performing well in novel, difficult tasks. At the same time, social influence, through social media, online reviews, or personal networks, is one of the most potent forces affecting individual decision-making. In three preregistered online experiments, we found that people rely more on algorithmic advice relative to social influence as tasks become more difficult. All three experiments focused on an intellective task with a correct answer and found that subjects relied more on algorithmic advice as difficulty increased. This effect persisted even after controlling for the quality of the advice, the numeracy and accuracy of the subjects, and whether subjects were exposed to only one source of advice, or both sources. Subjects also tended to more strongly disregard inaccurate advice labeled as algorithmic compared to equally inaccurate advice labeled as coming from a crowd of peers.

Funder

Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

1. Schaeffer, J. et al. Checkers is solved. Science 317, 1518–1522 (2007).

2. Silver, D. et al. Mastering Chess and Shogi by self-play with a general reinforcement learning algorithm. arXiv (2017).

3. Dockrill, P. In just 4 hours, Google’s AI mastered all the chess knowledge in history. Science Alert (2017).

4. Brown, N. & Sandholm, T. Superhuman AI for multiplayer poker. Science 365, 885–890 (2019).

5. Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the Seventh International Conference on World Wide Web 107–117 (1998).

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3