High turbidity levels alter coral reef fish movement in a foraging task

Author:

Newport Cait,Padget Oliver,de Perera Theresa Burt

Abstract

AbstractSensory systems allow animals to detect and respond to stimuli in their environment and underlie all behaviour. However, human induced pollution is increasingly interfering with the functioning of these systems. Increased suspended sediment, or turbidity, in aquatic habitats reduces the reactive distance to visual signals and may therefore alter movement behaviour. Using a foraging task in which fish (Rhinecanthus aculeatus) had to find six food sites in an aquarium, we tested the impact of high turbidity (40–68 NTU; 154 mg/L) on foraging efficiency using a detailed and novel analysis of individual movements. High turbidity led to a significant decrease in task efficacy as fish took longer to begin searching and find food, and they travelled further whilst searching. Trajectory analyses revealed that routes were less efficient and that fish in high turbidity conditions were more likely to cover the same ground and search at a slower speed. These results were observed despite the experimental protocol allowing for the use of alternate sensory systems (e.g. olfaction, lateral line). Given that movement underlies fundamental behaviours including foraging, mating, and predator avoidance, a reduction in movement efficiency is likely to have a significant impact on the health and population dynamics of visually-guided fish species.

Funder

Horizon 2020

Leverhulme Trust

St. John's College, University of Oxford

Human Frontier Science Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3