An experimental method for estimating the tearing energy in rubber-like materials using the true stored energy

Author:

Elmukashfi Elsiddig

Abstract

AbstractA method for determining the critical tearing energy in rubber-like materials is proposed. In this method, the energy required for crack propagation in a rubber-like material is determined by the change of recovered elastic energy which is obtained by deducting the dissipated energy due to different inelastic processes from the total strain energy applied to the system. Hence, the classical method proposed by Rivlin and Thomas using the pure shear tear test is modified using the actual stored elastic energy. The total dissipated energy is evaluated using cyclic pure shear and simple shear dynamic experiments at the critical stretch level. To accurately estimate the total dissipated energy, the unloading rate is determined from the time the crack takes to grow an increment. A carbon-black-filled natural rubber is examined in this study. In cyclic pure shear experiment, the specimens were cyclically loaded under quasi-static loading rate of $$0.01~{\rm {s}}^{-1}$$ 0.01 s - 1 and for different unloading rates, i.e. $$0.01$$ 0.01 , $$0.1$$ 0.1 and $$1.0~{\rm {s}}^{-1}$$ 1.0 s - 1 . The simple shear dynamic experiment is used to obtain the total dissipated energy at higher frequencies, i.e. $$0.5$$ 0.5 -$$18~{\rm {Hz}}$$ 18 Hz which corresponds to unloading rates $$0.46$$ 0.46 -$$16.41~{\rm {s}}^{-1}$$ 16.41 s - 1 , using the similarities between simple and pure shear deformation. The relationship between dissipated energy and unloading stretch rate is found to follow a power-law such that cyclic pure shear and simple shear dynamic experiments yield similar result. At lower unloading rates (i.e. $${\dot{\lambda }}_{\rm {U}} < 1.0~{\rm {s}}^{-1}$$ λ ˙ U < 1.0 s - 1 ), Mullins effect dominates and the viscous dissipation is minor, whereas at higher unloading rates, viscous dissipation becomes significant. At the crack propagation unloading rate $$125.2~{\rm {s}}^{-1}$$ 125.2 s - 1 , the viscous dissipation is significant such that the amount of dissipated energy increases approximately by $$125.4\%$$ 125.4 % from the lowest unloading rate. The critical tearing energy is obtained to be $$7.04~{\rm {kJ}}/{\rm {m}}^{2}$$ 7.04 kJ / m 2 using classical method and $$5.12~{\rm {kJ}}/{\rm {m}}^{2}$$ 5.12 kJ / m 2 using the proposed method. Hence, the classical method overestimates the critical tearing energy by approximately $$37.5\%$$ 37.5 % .

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference39 articles.

1. Rivlin, R. & Thomas, A. Rupture of rubber. I. Characteristic energy for tearing. J. Polymer Sci. 10, 291–318 (1953).

2. Griffith, A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A (containing papers of a mathematical or physical character) 221, 163–198 (1921).

3. Greensmith, H. & Thomas, A. Rupture of rubber. III. Determination of tear properties. Rubber Chem. Technol. 29, 372–381 (1956).

4. Thomas, A. Rupture of rubber. VI. Further experiments on the tear criterion. J. Appl. Polymer Sci. 3, 168–174 (1960).

5. Lake, G., Thomas, A., Lake, G. & Thomas, A. The strength of highly elastic materials. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 300, 108–119 (1967).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3