3D modelling and simulation of the impact of wearing a mask on the dispersion of particles carrying the SARS-CoV-2 virus in a railway transport coach

Author:

Armand Patrick,Tâche Jérémie

Abstract

AbstractEven though the Covid-19 pandemic seems to be stagnating or decreasing across the world, a resurgence of the disease or the occurrence of other epidemics caused by the aerial dissemination of pathogenic biological agents cannot be ruled out. These agents, in particular the virions of the Covid-19 disease, are found in the particles originating from the sputum of infected symptomatic or asymptomatic people. In previous research, we made use of a three-dimensional Computational Fluid Dynamics (CFD) model to simulate particle transport and dispersion in ventilated semi-confined spaces. By way of illustration, we considered a commuter train coach in which an infected passenger emitted droplets (1 and 10 µm) and drops (100 and 1000 µm) while breathing and coughing. Using an Eulerian approach and a Lagrangian approach, we modelled the dispersion of the particles in the turbulent flow generated by the ventilation of the coach. The simulations returned similar results from both approaches and clearly demonstrated the very distinct aerodynamics of the aerosol of airborne droplets and, at the other end of the spectrum, of drops falling or behaving like projectiles depending on their initial velocity. That numerical study considered passengers without protective masks. In this new phase of research, we first used literature data to develop a model of a typical surgical mask for use on a digital manikin representing a human. Next, we resumed the twin experiment of the railway coach, but this time, the passengers (including the infected one) were provided with surgical masks. We compared the spatial and temporal distributions of the particles depending on whether the spreader passenger wore a mask at all, and whether the mask was perfectly fitted (without leaks) or worn loosely (with leaks). Beyond demonstrating the obvious value of wearing a mask in limiting the dissemination of particles, our model and our simulations allow a quantification of the ratio of particles suspended in the coach depending on whether the infected passenger wears a mask or not. Moreover, the calculations carried out constitute only one illustrative application among many others, not only in public transport, but in any other public or private ventilated space on the basis of the same physical models and digital twins of the places considered. CFD therefore makes it possible to estimate the criticality of the occupation of places by people with or without a mask and to recommend measures in order to limit aerial contamination by any kind of airborne pathogen, such as the virions of Covid-19.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference53 articles.

1. Armand, P. & Tâche, J. 3D modelling and simulation of the dispersion of droplets and drops carrying the SARS-CoV-2 virus in a railway transport coach. Nat. Sci. Rep. 12, 4025 (2022).

2. World Health Organization internet. https://www.who.int/fr/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-coronaviruses (2020).

3. Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. J. Am. Med. Assoc. 323(18), 1837–2183 (2020).

4. Masters, P. S. The molecular biology of coronaviruses. Adv. Virus Res. 66, 193–292 (2006).

5. Wells, W. F. On airborne infection study II: Droplets and droplet nuclei. Am. J. Epidemiol. 20(3), 611–618 (1934).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3