Comprehensive analysis of a stochastic wireless sensor network motivated by Black-Karasinski process

Author:

Liu Peijiang,Din Anwarud

Abstract

AbstractWireless sensor networks (WSNs) encounter a significant challenge in ensuring network security due to their operational constraints. This challenge stems from the potential infiltration of malware into WSNs, where a single infected node can rapidly propagate worms to neighboring nodes. To address this issue, this research introduces a stochastic $$\textsf{S}\textsf{E}\textsf{I}\textsf{R}\textsf{S}$$ S E I R S model to characterize worm spread in WSNs. Initially, we established that our model possesses a globally positive solution. Subsequently, we determine a threshold value for our stochastic system and derive a set of sufficient conditions that dictate the persistence or extinction of worm spread in WSNs based on the mean behavior. Our study reveals that environmental randomness can impede the spread of malware in WSNs. Moreover, by utilizing various parameter sets, we obtain approximate solutions that showcase these precise findings and validate the effectiveness of the proposed $$\textsf{S}\textsf{E}\textsf{I}\textsf{R}\textsf{S}$$ S E I R S model, which surpasses existing models in mitigating worm transmission in WSNs.

Funder

National Natural Science Foundation of P. R. China

Guangzhou Science and technology innovation general project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3