Compressible unsteady steam flow and heat transport analysis: a numerical investigation

Author:

Hussain Azad,Arsaln Muhammad,Rehman Aysha,Alharbi Fahad M.,Akkurt Nevzat,Eldin Sayed M.,Althobaiti Saad

Abstract

AbstractThe unsteady compressible steam laminar flow associated with heat transfer in fluids in a squared cylinder is examined in this work. The current challenge was created utilizing the CFD approach. The laminar flow is chosen with a low Mach number. With the geometric wall, the flow has a no-slip condition. The pressure on the flow is kept at 0 pas, and the temperature in the flow regime is 305.13. A 0.5 m/s velocity is used to start the flow. With the use of graphics, the effects of time on velocity and pressure distributions are discussed. Different outcomes are also mentioned, such as drag coefficients, lift coefficients, and heat distributions. The velocity drops from 2.5 to 1.6 m/s at t = 7 s in the absence of anybody's force and temperature 305.13 K. Pressure increases from 0.00098 to 0.001 Pas in the flow interval of 10 s. Surface temperature increases from 360 to 375 K in time intervals of 10 s keeping pressure constant. And contour temperature increases from 371.56 to 374.2 K in time intervals of 10 s keeping the pressure constant. This information provides us with caution about the emission of steam from the chimneys of furnaces. It implies that when steam flows from a cylindrical geometry like chimneys of furnaces it heats the upper inner and outer parts which may destroy the material. So for safety, that emission should be taken for a short interval of time otherwise it will result in a havoc process. The lift coefficient remains constant and the drag coefficient increases from 0.0005 to 0.065. Under that condition, fluid has to face more resistance. To overcome that difficulty fluid should be provided with high velocity to continue it for a long time. The technique used to solve modeled problems is the Backward Difference Formula.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3