Route of pesticide spread on the body surface of Blattella germanica (Linnaeus): a NanoSuit–energy dispersive X-ray spectroscopy analysis

Author:

Takaku Yasuharu,Shiraki Katsumi,Suzuki Chiaki,Takehara Sayuri,Nishii Hiroyuki,Sasaki Tomonori,Hariyama Takahiko

Abstract

AbstractNumerous studies have focussed on the mechanisms of entry of pesticides into insect body parts such as oral intake, penetration through the integument of the body wall, and inhalation through spiracles. However, little is known about how insecticides spread to the points of entry or the paths on the body surface that are used to reach the target sites. In this study, elemental signals of pesticide-mimicking test solutions were tracked and their routes of spreading in experimental insects (Blattella germanica L.) were investigated using NanoSuit (a method of surface modification) and energy dispersive X-ray spectroscopy, combined with high-resolution scanning electron microscopy. When the test solution initially adhered to the dorsal and/or ventral body surface, it tended to spread horizontally to reach lateral plates. Whereas, when the solution directly adhered to the anterior side of the lateral plates, it spread to posterior segments. In this case, however, spreading in the opposite direction (i.e., the solution directly adhered to the posterior side of the lateral plates) was interrupted at a boundary erected by different groups of fine structures; each protrusion was large, and the arrangement was rather dense in the posterior segments. Morphological features of these fine structures and chemical characteristics of the hydrophobic surface substances potentially regulate the strength of the capillary force, which determines pesticide spreading.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3