Genome-wide Identification and Characterization of Heat Shock Protein Family Reveals Role in Development and Stress Conditions in Triticum aestivum L.

Author:

Kumar Ashish,Sharma Saloni,Chunduri Venkatesh,Kaur Amandeep,Kaur Satinder,Malhotra NikhilORCID,Kumar Aman,Kapoor Payal,Kumari Anita,Kaur Jaspreet,Sonah Humira,Garg Monika

Abstract

AbstractHeat shock proteins (HSPs) have a significant role in protein folding and are considered as prominent candidates for development of heat-tolerant crops. Understanding of wheat HSPs has great importance since wheat is severely affected by heat stress, particularly during the grain filling stage. In the present study, efforts were made to identify HSPs in wheat and to understand their role during plant development and under different stress conditions. HSPs in wheat genome were first identified by using Position-Specific Scoring Matrix (PSSMs) of known HSP domains and then also confirmed by sequence homology with already known HSPs. Collectively, 753 TaHSPs including 169 TaSHSP, 273 TaHSP40, 95 TaHSP60, 114 TaHSP70, 18 TaHSP90 and 84 TaHSP100 were identified in the wheat genome. Compared with other grass species, number of HSPs in wheat was relatively high probably due to the higher ploidy level. Large number of tandem duplication was identified in TaHSPs, especially TaSHSPs. The TaHSP genes showed random distribution on chromosomes, however, there were more TaHSPs in B and D sub-genomes as compared to the A sub-genome. Extensive computational analysis was performed using the available genomic resources to understand gene structure, gene expression and phylogentic relationship of TaHSPs. Interestingly, apart from high expression under heat stress, high expression of TaSHSP was also observed during seed development. The study provided a list of candidate HSP genes for improving thermo tolerance during developmental stages and also for understanding the seed development process in bread wheat.

Funder

Department of Biotechnology,Ministry of Science and Technology

DBT | National Agri-Food Biotechnology Institute

Council of Scientific and Industrial Research

DST | Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3