Abstract
AbstractHeat shock proteins (HSPs) have a significant role in protein folding and are considered as prominent candidates for development of heat-tolerant crops. Understanding of wheat HSPs has great importance since wheat is severely affected by heat stress, particularly during the grain filling stage. In the present study, efforts were made to identify HSPs in wheat and to understand their role during plant development and under different stress conditions. HSPs in wheat genome were first identified by using Position-Specific Scoring Matrix (PSSMs) of known HSP domains and then also confirmed by sequence homology with already known HSPs. Collectively, 753 TaHSPs including 169 TaSHSP, 273 TaHSP40, 95 TaHSP60, 114 TaHSP70, 18 TaHSP90 and 84 TaHSP100 were identified in the wheat genome. Compared with other grass species, number of HSPs in wheat was relatively high probably due to the higher ploidy level. Large number of tandem duplication was identified in TaHSPs, especially TaSHSPs. The TaHSP genes showed random distribution on chromosomes, however, there were more TaHSPs in B and D sub-genomes as compared to the A sub-genome. Extensive computational analysis was performed using the available genomic resources to understand gene structure, gene expression and phylogentic relationship of TaHSPs. Interestingly, apart from high expression under heat stress, high expression of TaSHSP was also observed during seed development. The study provided a list of candidate HSP genes for improving thermo tolerance during developmental stages and also for understanding the seed development process in bread wheat.
Funder
Department of Biotechnology,Ministry of Science and Technology
DBT | National Agri-Food Biotechnology Institute
Council of Scientific and Industrial Research
DST | Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献