Author:
Abbas Fatima,Ali Jawad,Mashwani Wali Khan,Syam Muhammad I.
Abstract
Abstractq-ROPFLS, including numeric and linguistic data, has a wide range of applications in handling uncertain information. This article aims to investigate q-ROPFL correlation coefficient based on the proposed information energy and covariance formulas. Moreover, considering that different q-ROPFL elements may have varying criteria weights, the weighted correlation coefficient is further explored. Some desirable characteristics of the presented correlation coefficients are also discussed and proven. In addition, some theoretical development is provided, including the concept of composition matrix, correlation matrix, and equivalent correlation matrix via the proposed correlation coefficients. Then, a clustering algorithm is expanded where data is expressed in q-ROPFL form with unknown weight information and is explained through an illustrative example. Besides, detailed parameter analysis and comparative study are performed with the existing approaches to reveal the effectiveness of the framed algorithm.
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献