A multi-epitope vaccine designed against blood-stage of malaria: an immunoinformatic and structural approach

Author:

Atapour Amir,Vosough Parisa,Jafari Somayeh,Sarab Gholamreza Anani

Abstract

AbstractMalaria is a complex disease caused by parasites of the genus Plasmodium and is the leading cause of morbidity and mortality worldwide. The most severe form of malaria disease is caused by Plasmodium falciparum. Thus, a combination of different approaches is needed to control malaria. Resistance to first-line drugs and insecticides, on the other hand, makes the need for an effective vaccination more urgent than ever. Because erythrocyte parasites cause the most clinical symptoms, developing a vaccination for this stage of infection might be highly beneficial. In this research, we employed various bioinformatics methods to create an efficient multi-epitope vaccine that induces antibodies against the blood stage of malaria infection. For this purpose, we selected the malaria PfGARP protein as the target here. The B, HTL epitopes, and epitope conservation were predicted. The predicted epitopes (including 5 B and 5 HTL epitopes) were connected using suitable linkers, and the flagellin molecule was used as an adjuvant to improve its immunogenicity. The final construct vaccine with 414 amino acids long was designed. The vaccine's allergenicity, antigenicity, solubility, physicochemical characteristics, 2D and 3D structure modeling, molecular docking, molecular dynamics simulation, in silico cloning, and immunological simulation were tested. In silico immune simulation results showed significantly elevated IgG1 and IgM and T helper cells, INF γ, IL 2, and B-cell populations after the injection of the designed vaccine. These significant computational analyses indicated that our proposed vaccine candidate might activate suitable immune responses against malaria. However, in vitro and in vivo studies are essential for further validation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3