Author:
Feng Huan,Pang Aiping,Zhou Hongbo
Abstract
AbstractThe piezoelectric nanopositioning platform requires extremely accurate tracking during the task, while the model uncertainty caused by load variations requires strong robustness of the system. The high accuracy and robustness in the control design are coupled to each other, making it difficult to achieve both optimally at the same time. In addition, the system itself has a weakly damped resonant mode, which makes it extremely difficult to control the piezoelectric nanopositioning platform while suppressing the inherent resonance of the system as well as meeting the requirements for robustness and high accuracy. For the multi-performance integrated control problem of piezoelectric nanopositioning platform, this paper gives two kinds of control designs (integral resonance control (IRC) and H∞ control) satisfying accuracy requirements and robustness, and carries out simulation study and comparative analysis with positive position feedback control (PPF). Simulation results show that the H∞ control strategy given in this paper has the smallest tracking error compared to PPF and IRC under 5, 10 and 20 Hz input grating scan signals, though it has a higher order, with better robustness to mechanical load variations and high frequency signal perturbations in the 0–1000 g load range.
Funder
National Natural Science Foundation of China Regional Projects
Guizhou University Incubation Program
Guizhou Provincial Education Department Young Talent Growth Project
Science and Technology Fund of the Department of Science and Technology of Guizhou Province
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献