Author:
Luqman Mohammad,Shaikh Hamid,Anis Arfat,Al-Zahrani Saeed M.,Hamidi Abdullah,Inamuddin
Abstract
AbstractAn electro-stimulus-responsive bending actuator was developed by synthesizing a non-perfluorinated membrane based on silicotungstic acid (SA), sulfonated polyvinyl alcohol (SPVA), and polyaniline (PANI). The membrane was developed via solution casting method. The dry membrane SA/SPVA showed a sufficient ion-exchange potential of 1.6 meq g−1 dry film. The absorption capacity of the membrane after almost 6 h of immersion was found to be ca. 245% at 45 °C. The electroless plating with Pt metal was carried out on both sides of the membrane that delivered an excellent proton conductivity of 1.9 × 10−3 S cm−1. Moreover, the scanning electron microscopy (SEM) was conducted to reflect the smooth and consistent surface that can prevent water loss. The water loss capacity of the membrane was found to be ca. 33% at 6 V for 16 min. These results suggest a good actuation output of the ionic polymer metal composite (IPMC) membrane once the electrical potential is applied. The electromechanical characterization displayed a maximum tip displacement of 32 mm at 3 V. A microgripping device based on multifigure IPMC membrane may be developed showing a good potential in micro-robotics.
Funder
National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献