Identification of breast lesion through integrated study of gorilla troops optimization and rotation-based learning from MRI images

Author:

Si Tapas,Patra Dipak Kumar,Mallik Saurav,Bandyopadhyay Anjan,Sarkar Achyuth,Qin Hong

Abstract

AbstractBreast cancer has emerged as the most life-threatening disease among women around the world. Early detection and treatment of breast cancer are thought to reduce the need for surgery and boost the survival rate. The Magnetic Resonance Imaging (MRI) segmentation techniques for breast cancer diagnosis are investigated in this article. Kapur’s entropy-based multilevel thresholding is used in this study to determine optimal values for breast DCE-MRI lesion segmentation using Gorilla Troops Optimization (GTO). An improved GTO, is developed by incorporating Rotational opposition based-learning (RBL) into GTO called (GTORBL) and applied it to the same problem. The proposed approaches are tested on 20 patients’ T2 Weighted Sagittal (T2 WS) DCE-MRI 100 slices. The proposed approaches are compared with Tunicate Swarm Algorithm (TSA), Particle Swarm Optimization (PSO), Arithmetic Optimization Algorithm (AOA), Slime Mould Algorithm (SMA), Multi-verse Optimization (MVO), Hidden Markov Random Field (HMRF), Improved Markov Random Field (IMRF), and Conventional Markov Random Field (CMRF). The Dice Similarity Coefficient (DSC), sensitivity, and accuracy of the proposed GTO-based approach is achieved $$87.04\%$$ 87.04 % , $$90.96\%$$ 90.96 % , and $$98.13\%$$ 98.13 % respectively. Another proposed GTORBL-based segmentation method achieves accuracy values of $$99.31\%$$ 99.31 % , sensitivity of $$95.45\%$$ 95.45 % , and DSC of $$91.54\%$$ 91.54 % . The one-way ANOVA test followed by Tukey HSD and Wilcoxon Signed Rank Test are used to examine the results. Furthermore, Multi-Criteria Decision Making is used to evaluate overall performance focused on sensitivity, accuracy, false-positive rate, precision, specificity, $$F_1$$ F 1 -score, Geometric-Mean, and DSC. According to both quantitative and qualitative findings, the proposed strategies outperform other compared methodologies.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3