Combination of triheptanoin with the ketogenic diet in Glucose transporter type 1 deficiency (G1D)

Author:

Avila Adrian,Málaga Ignacio,Sirsi Deepa,Kayani Saima,Primeaux Sharon,Kathote Gauri A.,Jakkamsetti Vikram,Kallem Raja Reddy,Putnam William C.,Park Jason Y.,Shinnar Shlomo,Pascual Juan M.

Abstract

AbstractFuel influx and metabolism replenish carbon lost during normal neural activity. Ketogenic diets studied in epilepsy, dementia and other disorders do not sustain such replenishment because their ketone body derivatives contain four carbon atoms and are thus devoid of this anaplerotic or net carbon donor capacity. Yet, in these diseases carbon depletion is often inferred from cerebral fluorodeoxyglucose-positron emission tomography. Further, ketogenic diets may prove incompletely therapeutic. These deficiencies provide the motivation for complementation with anaplerotic fuel. However, there are few anaplerotic precursors consumable in clinically sufficient quantities besides those that supply glucose. Five-carbon ketones, stemming from metabolism of the food supplement triheptanoin, are anaplerotic. Triheptanoin can favorably affect Glucose transporter type 1 deficiency (G1D), a carbon-deficiency encephalopathy. However, the triheptanoin constituent heptanoate can compete with ketogenic diet-derived octanoate for metabolism in animals. It can also fuel neoglucogenesis, thus preempting ketosis. These uncertainties can be further accentuated by individual variability in ketogenesis. Therefore, human investigation is essential. Consequently, we examined the compatibility of triheptanoin at maximum tolerable dose with the ketogenic diet in 10 G1D individuals using clinical and electroencephalographic analyses, glycemia, and four- and five-carbon ketosis. 4 of 8 of subjects with pre-triheptanoin beta-hydroxybutyrate levels greater than 2 mM demonstrated a significant reduction in ketosis after triheptanoin. Changes in this and the other measures allowed us to deem the two treatments compatible in the same number of individuals, or 50% of persons in significant beta-hydroxybutyrate ketosis. These results inform the development of individualized anaplerotic modifications to the ketogenic diet.ClinicalTrials.gov registration NCT03301532, first registration: 04/10/2017.

Funder

National Institute of Neurological Disorders and Stroke

Fundación Alicia Koplowitz

Glut1 Deficiency Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3