Critical behavior and magnetocaloric effect across the magnetic transition in Mn1+xFe4−xSi3

Author:

Singh Vikram,Bag Pallab,Rawat R.,Nath R.

Abstract

AbstractThe nature of the magnetic transition, critical scaling of magnetization, and magnetocaloric effect in Mn1+xFe4−xSi3 (x = 0 to 1) are studied in detail. Our measurements show no thermal hysteresis across the magnetic transition for the parent compound which is in contrast with the previous report and corroborate the second order nature of the transition. The magnetic transition could be tuned continuously from 328 K to 212 K with Mn substitution at the Fe site. The Mn substitution leads to a linear increase in the unit cell volume and a slight reduction in the effective moment. A detailed critical analysis of the magnetization data for x = 0.0 and 0.2 is performed in the critical regime using the modified Arrott plots, Kouvel-Fisher plot, universal curve scaling, and scaling analysis of magnetocaloric effect. The magnetization isotherms follow modified Arrott plots with critical exponent (β$$\simeq $$ 0.308, γ$$\simeq $$ 1.448, and δ$$\simeq $$ 5.64) for the parent compound (x = 0.0) and (β$$\simeq $$ 0.304, γ$$\simeq $$ 1.445, and δ$$\simeq $$ 5.64) for x = 0.2. The Kouvel-Fisher and universal scaling plots of the magnetization isotherms further confirm the reliability of our critical analysis and values of the exponents. These values of the critical exponents are found to be same for both the parent and doped samples which do not fall under any of the standard universality classes. The exchange interaction decays as J(r) ~ r−3.41 following the renormalization group theory and the observed critical exponents correspond to lattice dimensionality d = 2, spin dimensionality n = 1, and the range of interaction σ = 1.41. This value of σ(<2) indicates long-range interaction between magnetic spins. A reasonable magnetocaloric effect ΔSm$$\simeq $$ −6.67 J/Kg-K and −5.84 J/Kg-K for x = 0.0 and 0.2 compounds, respectively, with a huge relative cooling power (RCP ~ 700 J/Kg) for 9 T magnetic field change is observed. The universal scaling of magnetocaloric effect further mimics the second order character of the magnetic transition. The obtained critical exponents from the critical analysis of magnetocaloric effect agree with the values deduced from the magnetic isotherm analysis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3