Performance of neuroretinal rim thickness measurement by Cirrus high-definition optical coherence tomography in myopic eyes

Author:

Lam Andrew K. C.,Lai H. C.,Sung Y. K.,Lam W. H.,Tiu C. M.

Abstract

AbstractNeuroretinal rim (NRR) measurement can aid the diagnosis of glaucoma. A few studies reported that Cirrus optical coherence tomography (OCT) had NRR segmentation errors. The current study investigated segmentation success of NRR in myopic eyes using the Cirrus built-in software and to determine the number of acquisitions required to identify NRR thinning. Right eye of 87 healthy adult myopes had an optic disc scanned using Cirrus HD-OCT for five successive acquisitions. A masked examiner evaluated 36 radial line images of each scan to screen for segmentation errors using the built-in software at the Bruch’s membrane opening (BMO) and/or internal limiting membrane (ILM). Participants with three accurate NRR acquisitions had their average NRR thickness determined. This result was compared with average of the two acquisitions and the first acquisition. Among 435 OCT scans of the optic disc (87 eyes × 5 acquisitions), 129 (29.7%) scans had segmentation errors that occurred mainly at the ILM. The inferior-temporal and superior meridians had slightly more segmentation errors than other meridians, independent of axial length, amount of myopia, or presence of peripapillary atrophy. Sixty-five eyes (74.7%) had at least three accurate NRR measurements. The three acquisitions had high reliability in NRR thickness in the four quadrants (intraclass correlation coefficient > 0.990, coefficient of variation < 3.9%). NRR difference between the first acquisition and the average of three acquisitions was small (mean difference 2 ± 13 μm, 95% limits of agreement within ± 30 μm) among the four quadrants. Segmentation errors in NRR measurements appeared regardless of axial length, amount of myopia, or presence of peripapillary atrophy. Cirrus segmentation lines should be manually inspected when measuring NRR thickness.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3