A new indicator for estimating the degree of mining-induced land subsidence: the overburden’s average GSI value

Author:

Gong Yaqiang,Zha Jianfeng,Guo Qingbiao,Guo Guangli

Abstract

AbstractUnderground coal mining leads to land subsidence, which, in turn, results in damage to buildings and infrastructure, disturbs the original ecological environment, and hinders the sustainable development of coal mining cities. A reasonable estimation of land subsidence, on the other hand, is the foundation for building protection, land reclamation, and ecological environment reconstruction. However, when we applied the existing land subsidence estimation theory to the deep mining areas of the Ordos coalfield in western China, there was a significant deviation between the estimations and the measurements. To explain such unusual case, we propose using the overburden’s average GSI (Geological Strength Index) value instead of the compressive strength (UCS) of rock specimens for a better representation of the overburden’s overall properties. By using on-site subsidence monitoring results and historical data, we provided evidence which supports that the overburden’s average GSI value has a much greater impact on subsidence rates than the UCS. Subsequently, we investigated the relationship between three typical overburden’s GSI values and the subsidence rates via a calibrated numerical model, revealing the variation patterns of maximum surface subsidence when the overburden’s average GSI value is set at 30, 50, and 75, respectively. Finally, on the basis of the measured and simulated results, we discussed a non-conventional strip mining method for mining subsidence control in the deep mining areas of the Ordos coalfield in western China, and explained why it is possible and what are the significant advantages behind. The proposed methods, findings, and suggestions in this paper are therefore quite helpful for researchers and engineers who wish to estimate and control the mining-induced land subsidence, as well as for those who are particularly interested in the study of environment science related to land subsidence.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3