scRNA-seq revealed high stemness epithelial malignant cell clusters and prognostic models of lung adenocarcinoma

Author:

Lin GuoYong,Gao ZhiSen,Wu Shun,Zheng JianPing,Guo XiangQiong,Zheng XiaoHong,Chen RunNan

Abstract

AbstractLung adenocarcinoma (LUAD) is one of the sole causes of death in lung cancer patients. This study combined with single-cell RNA-seq analysis to identify tumor stem-related prognostic models to predict the prognosis of lung adenocarcinoma, chemotherapy agents, and immunotherapy efficacy. mRNA expression-based stemness index (mRNAsi) was determined by One Class Linear Regression (OCLR). Differentially expressed genes (DEGs) were detected by limma package. Single-cell RNA-seq analysis in GSE123902 dataset was performed using Seurat package. Weighted Co-Expression Network Analysis (WGCNA) was built by rms package. Cell differentiation ability was determined by CytoTRACE. Cell communication analysis was performed by CellCall and CellChat package. Prognosis model was constructed by 10 machine learning and 101 combinations. Drug predictive analysis was conducted by pRRophetic package. Immune microenvironment landscape was determined by ESTIMATE, MCP-Counter, ssGSEA analysis. Tumor samples have higher mRNAsi, and the high mRNAsi group presents a worse prognosis. Turquoise module was highly correlated with mRNAsi in TCGA-LUAD dataset. scRNA analysis showed that 22 epithelial cell clusters were obtained, and higher CSCs malignant epithelial cells have more complex cellular communication with other cells and presented dedifferentiation phenomenon. Cellular senescence and Hippo signaling pathway are the major difference pathways between high- and low CSCs malignant epithelial cells. The pseudo-temporal analysis shows that cluster1, 2, high CSC epithelial cells, are concentrated at the end of the differentiation trajectory. Finally, 13 genes were obtained by intersecting genes in turquoise module, Top200 genes in hdWGCNA, DEGs in high- and low- mRNAsi group as well as DEGs in tumor samples vs. normal group. Among 101 prognostic models, average c-index (0.71) was highest in CoxBoost + RSF model. The high-risk group samples had immunosuppressive status, higher tumor malignancy and low benefit from immunotherapy. This work found that malignant tumors and malignant epithelial cells have high CSC characteristics, and identified a model that could predict the prognosis, immune microenvironment, and immunotherapy of LUAD, based on CSC-related genes. These results provided reference value for the clinical diagnosis and treatment of LUAD.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3