Evaluation of multi-task learning in deep learning-based positioning classification of mandibular third molars

Author:

Sukegawa Shintaro,Matsuyama Tamamo,Tanaka Futa,Hara Takeshi,Yoshii Kazumasa,Yamashita Katsusuke,Nakano Keisuke,Takabatake Kiyofumi,Kawai Hotaka,Nagatsuka Hitoshi,Furuki Yoshihiko

Abstract

AbstractPell and Gregory, and Winter’s classifications are frequently implemented to classify the mandibular third molars and are crucial for safe tooth extraction. This study aimed to evaluate the classification accuracy of convolutional neural network (CNN) deep learning models using cropped panoramic radiographs based on these classifications. We compared the diagnostic accuracy of single-task and multi-task learning after labeling 1330 images of mandibular third molars from digital radiographs taken at the Department of Oral and Maxillofacial Surgery at a general hospital (2014–2021). The mandibular third molar classifications were analyzed using a VGG 16 model of a CNN. We statistically evaluated performance metrics [accuracy, precision, recall, F1 score, and area under the curve (AUC)] for each prediction. We found that single-task learning was superior to multi-task learning (all p < 0.05) for all metrics, with large effect sizes and low p-values. Recall and F1 scores for position classification showed medium effect sizes in single and multi-task learning. To our knowledge, this is the first deep learning study to examine single-task and multi-task learning for the classification of mandibular third molars. Our results demonstrated the efficacy of implementing Pell and Gregory, and Winter’s classifications for specific respective tasks.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference23 articles.

1. Moghimi, M., Baart, J. A., Hakki Karagozoglu, K. & Forouzanfar, T. Spread of odontogenic infections: A retrospective analysis and review of the literature. Quintessence Int. 44, 351–361 (2013).

2. Sukegawa, S. et al. Do the presence of mandibular third molar and the occlusal support affect the occurrence and the mode of mandibular condylar fractures?. J. Hard Tissue Biol. 28, 377–382 (2019).

3. Stanaitytė, R., Trakinienė, G. & Gervickas, A. Do wisdom teeth induce lower anterior teeth crowding? A systematic literature review. Stomatologija. 16, 15–18 (2014).

4. Sukegawa, S. et al. What are the risk factors for postoperative infections of third molar extraction surgery: A retrospective clinical study?. Med. Oral Patol. Oral Cir. Bucal. 24, e123–e129 (2019).

5. Kang, F., Sah, M. K. & Fei, G. Determining the risk relationship associated with inferior alveolar nerve injury following removal of mandibular third molar teeth: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 121, 63–69 (2020).

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3