Enzyme-Assisted Photoinjection of Megadalton Molecules into Intact Plant Cells Using Femtosecond Laser Amplifier

Author:

Rukmana Taufiq Indra,Moran Gabriela,Méallet-Renault Rachel,Ohtani Misato,Demura Taku,Yasukuni Ryohei,Hosokawa Yoichiroh

Abstract

AbstractFemtosecond laser photoporation has become a popular method to deliver various kinds of molecules such as genes, proteins, and fluorescent dyes into single mammalian cells. However, this method is not easily applied to plant cells because their cell wall and turgor pressure prevent the delivery, especially for larger molecules than the mesh size of the cell wall. This work is the first demonstration of the efficient photoinjection of megadalton molecules into a cytoplasm of an intact single plant cell by employing a femtosecond laser amplifier under moderate enzyme treatment conditions. The intense femtosecond laser pulse effectively formed a pore on the cell wall and membrane of Tobacco BY-2, and 2 MDa dextran molecules were introduced through the pore. Along with the pore formation, induced mechanical tensile stresses on BY-2 cells were considered to increase permeability of the cell membrane and enhance the uptake of large molecules. Moreover, the moderate enzyme treatment partially degraded the cell wall thereby facilitating the increase of the molecular introduction efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3