Thermal conductivity and thermal diffusivity of fullerene-based nanofluids

Author:

Reding Brian,Khayet Mohamed

Abstract

AbstractOwing to their outstanding characteristics, carbon based nanofluids (CbNFs) have been applied to various advanced heat transfer and cooling technologies. It was claimed that these CbNFs can considerably improve the properties of the base working fluids. Among all the thermal characteristics, the thermal conductivity (λ) is regarded as the primary parameter to be considered for the application of nanofluids (NFs). In the present research study we measured for the first time both λ and thermal diffusivity (aT) of very stable fullerene (C60)-based NFs in liquid phase (1,2,3,4-tetrahydronaphthalene and 1,2-dicholorobenzene) by the transient multi-current hot wire technique at atmospheric pressure in a wide range of temperature (254–323 K). Similar to the base liquids (BLs), we observed a slight decrease in λ with an increase in temperature. Additionally, compared to the BLs λ was reduced upon the addition of C60. The results were compared with the predicted ones using different theoretical models. Not much variation in aT was observed between the C60 NFs and the corresponding BLs due partly to the small variation of λ with the addition of C60.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3