Author:
Reding Brian,Khayet Mohamed
Abstract
AbstractOwing to their outstanding characteristics, carbon based nanofluids (CbNFs) have been applied to various advanced heat transfer and cooling technologies. It was claimed that these CbNFs can considerably improve the properties of the base working fluids. Among all the thermal characteristics, the thermal conductivity (λ) is regarded as the primary parameter to be considered for the application of nanofluids (NFs). In the present research study we measured for the first time both λ and thermal diffusivity (aT) of very stable fullerene (C60)-based NFs in liquid phase (1,2,3,4-tetrahydronaphthalene and 1,2-dicholorobenzene) by the transient multi-current hot wire technique at atmospheric pressure in a wide range of temperature (254–323 K). Similar to the base liquids (BLs), we observed a slight decrease in λ with an increase in temperature. Additionally, compared to the BLs λ was reduced upon the addition of C60. The results were compared with the predicted ones using different theoretical models. Not much variation in aT was observed between the C60 NFs and the corresponding BLs due partly to the small variation of λ with the addition of C60.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献