Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya

Author:

Sharma Mamta,Monika ,Thakur Pankaj,Saini Reena V.,Kumar Rajesh,Torino Enza

Abstract

AbstractConservative remedies have a gray history worldwide and these provide productive and pertinent tools to tackle ailments. Also, the high altitude areas of Indian Himalayas with their wealthy biodiversity anchorage around 2000 plant species. Ensuing study demonstrates the synthesis of Silver (Ag) and gold (Au) nanoparticles (NPs) and utilizes one of the medicaments Curcuma longa of Indian Himalayas collected from different altitudes. For the same, turmeric rhizome extracts have been prepared from the aforesaid medicament and its anticancer activity and antimicrobial potential have been evaluated. Formation of Ag and Au nanoparticles was realized via UV–Vis spectroscopy and transmission electron microscope (TEM) confirmed size of the NPs. Antibacterial activity has been checked against Bacillus subtilis and Escherichia coli. The anticancer prospective has been observed against A549 and PC3 cell lines of both Au and Ag NPs and the cytotoxicity on PC3 and A549 cell lines was assessed using MTT assay. Results revealed higher amount of biochemicals, antibacterial and anticancer activity in Ag and Au NPs synthesized from rhizome extract collected from highest altitude. For the first time impact of altitudinal variations on phytochemicals and nanoparticles has been reported which have significant effect on its antimicrobial and anticancerous activity.

Funder

Royal Academy of Engineering, London, UK.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference38 articles.

1. Shanker, S. S., Rai, A., Ahmad, A. & Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–502 (2004).

2. Sun, D. H., Li, Q. B., He, N., Huang, J. L. & Wang, H. X. Stability of colloidal silver nanoparticles prepared by bioreduction. Rare Metal Mater. Eng. 40, 148–151 (2011).

3. Song, J. Y. & Kim, B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extract. Bioprocess Biosyst. Eng. 32, 79–84 (2009).

4. Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011).

5. Sharma, V. K., Yngard, R. A. & Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 1067–1077 (2017).

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3