Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor

Author:

Li Shijie,Tan Xiaopeng,Li Hui,Gao Yan,Wang Qian,Li Guoning,Guo Min

Abstract

AbstractIn order to realize the effective regulation of the pore structure of activated carbon and optimize its pore structure properties as electrode material, the effects of activation temperature, activation time and impregnation ratio on the specific surface area, total pore volume and average pore diameter of activated carbon prepared by sargassum are studied by orthogonal experiment. In addition, the electrochemical properties of sargassum-based activated carbon (SAC) and the relationship between the gravimetric capacitance and specific surface area of SAC are also studied. The SACs prepared under all conditions have high specific surface area (≥ 2227 m2 g−1) and developed pore structure, in which the pore diameter of micropores mainly concentrated in 0.4 ~ 0.8 nm, the pore diameter of mesopores mainly concentrated in 3 ~ 4 nm, and the number of micropores is far more than that of mesopores. In the activation process, the impregnation ratio has the greatest effect on the specific surface area of SAC, the activation temperature and impregnation ratio have significant effect on the total pore volume of SAC, and the regulation of the average pore diameter of SAC is mainly realized by adjusting the activation temperature. The SACs exhibit typical electric double layer capacitance performances on supercapacitors, delivering superior gravimetric capacitance of 237.3 F g−1 in 6 mol L−1 KOH electrolyte system at current density of 0.5 A g−1 and excellent cycling stability of capacitance retention of 92% after 10,000 cycles. A good linear relationship between gravimetric capacitance and specific surface area of SAC is observed.

Funder

Doctoral Fund of Shandong Jianzhu University

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3