Multimodality Imaging-Based Characterization of Regional Material Properties in a Murine Model of Aortic Dissection

Author:

Bersi Matthew R.,Acosta Santamaría Víctor A.,Marback Karl,Di Achille Paolo,Phillips Evan H.,Goergen Craig J.,Humphrey Jay D.,Avril Stéphane

Abstract

AbstractChronic infusion of angiotensin-II in atheroprone (ApoE−/−) mice provides a reproducible model of dissection in the suprarenal abdominal aorta, often with a false lumen and intramural thrombus that thickens the wall. Such lesions exhibit complex morphologies, with different regions characterized by localized changes in wall composition, microstructure, and properties. We sought to quantify the multiaxial mechanical properties of murine dissecting aneurysm samples by combining in vitro extension-distension data with full-field multimodality measurements of wall strain and thickness to inform an inverse material characterization using the virtual fields method. A key advance is the use of a digital volume correlation approach that allows for characterization of properties not only along and around the lesion, but also across its wall. Specifically, deformations are measured at the adventitial surface by tracking motions of a speckle pattern using a custom panoramic digital image correlation technique while deformations throughout the wall and thrombus are inferred from optical coherence tomography. These measurements are registered and combined in 3D to reconstruct the reference geometry and compute the 3D finite strain fields in response to pressurization. Results reveal dramatic regional variations in material stiffness and strain energy, which reflect local changes in constituent area fractions obtained from histology but emphasize the complexity of lesion morphology and damage within the dissected wall. This is the first point-wise biomechanical characterization of such complex, heterogeneous arterial segments. Because matrix remodeling is critical to the formation and growth of these lesions, we submit that quantification of regional material properties will increase the understanding of pathological mechanical mechanisms underlying aortic dissection.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3