Short echo time dual-frequency MR Elastography with Optimal Control RF pulses

Author:

Sango-Solanas Pilar,Tse Ve Koon Kevin,Van Reeth Eric,Ratiney Helene,Millioz Fabien,Caussy Cyrielle,Beuf Olivier

Abstract

AbstractMagnetic Resonance Elastography (MRE) quantifies the mechanical properties of tissues, typically applying motion encoding gradients (MEG). Multifrequency results allow better characterizations of tissues using data usually acquired through sequential monofrequency experiments. High frequencies are difficult to reach due to slew rate limitations and low frequencies induce long TEs, yielding magnitude images with low SNR. We propose a novel strategy to perform simultaneous multifrequency MRE in the absence of MEGs: using RF pulses designed via the Optimal Control (OC) theory. Such pulses control the spatial distribution of the MRI magnetization phase so that the resulting transverse magnetization reproduces the phase pattern of an MRE acquisition. The pulse is applied with a constant gradient during the multifrequency mechanical excitation to simultaneously achieve slice selection and motion encoding. The phase offset sampling strategy can be adapted according to the excitation frequencies to reduce the acquisition time. Phantom experiments were run to compare the classical monofrequency MRE to the OC based dual-frequency MRE method and showed excellent agreement between the reconstructed shear storage modulus G′. Our method could be applied to simultaneously acquire low and high frequency components, which are difficult to encode with the classical MEG MRE strategy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3