Enhancing calmodulin binding to ryanodine receptor is crucial to limit neuronal cell loss in Alzheimer disease

Author:

Nakamura Yoshihide,Yamamoto Takeshi,Xu Xiaojuan,Kobayashi Shigeki,Tanaka Shinji,Tamitani Masaki,Saito Takashi,Saido Takaomi C.,Yano Masafumi

Abstract

AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive neuronal cell loss. Recently, dysregulation of intracellular Ca2+ homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Here, we investigated (1) the pathogenic role of destabilization of ryanodine receptor (RyR2) in endoplasmic reticulum (ER) upon development of AD phenotypes in AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic), and (2) the therapeutic effect of enhanced calmodulin (CaM) binding to RyR2. In the neuronal cells from AppNL-G-F mice, CaM dissociation from RyR2 was associated with AD-related phenotypes, i.e. Aβ accumulation, TAU phosphorylation, ER stress, neuronal cell loss, and cognitive dysfunction. Surprisingly, either genetic (by V3599K substitution in RyR2) or pharmacological (by dantrolene) enhancement of CaM binding to RyR2 reversed almost completely the aforementioned AD-related phenotypes, except for Aβ accumulation. Thus, destabilization of RyR2 due to CaM dissociation is most likely an early and fundamental pathogenic mechanism involved in the development of AD. The discovery that neuronal cell loss can be fully prevented simply by stabilizing RyR2 sheds new light on the treatment of AD.

Funder

The Ministry of Education in Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3