Directional touch sensing for stiffness singularity search in an object using microfinger with tactile sensor

Author:

Konishi Satoshi,Kakehi Yugo,Hori Yuto

Abstract

AbstractPalpation is widely used as the initial medical diagnosis. Integration of micro tactile sensors and artificial muscles enables a soft microfinger for active touch sensing using its bending actuation. Active touch sensing by pushing-in motion of microfinger enables to evaluate stiffness distribution on an elastic object. Due to its compactness, the microfinger can enter a narrow space, such as gastrointestinal and abdominal spaces in a body. However, a microfinger can only touch and sense limited points. We aim at efficient method for searching a stiffness singular part in an elastic object by the directional touch sensing of a microfinger. This study presents a microfinger for active touch sensing using bending and push-in actuation and proposes an algorithm utilizing directivity in touch sensing by a microfinger for efficient localization of the stiffness singular part in an object. A gelatin block structure with a small rigid ball was prepared and touch sensed by the microfinger. Consequently, the position of the buried rigid ball could be efficiently identified based on the proposed algorithm. This result implies that the proposed method has potential applications in endoscopic medical diagnosis, particularly in identifying tumor positions.

Funder

Ritsumeikan Global Innovation Research Organization, Ritsumeikan University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indenting a thick gel with a solid spherical inclusion;European Journal of Mechanics - A/Solids;2024-07

2. An EMG-Based Teleoperation System with Small Hand Based on a Dual-Arm Task Model;2023 8th International Conference on Control and Robotics Engineering (ICCRE);2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3