Esterified carotenoids are synthesized in petals of carnation (Dianthus caryophyllus) and accumulate in differentiated chromoplasts

Author:

Iijima Luna,Kishimoto Sanae,Ohmiya Akemi,Yagi Masafumi,Okamoto Emi,Miyahara Taira,Tsujimoto Takashi,Ozeki Yoshihiro,Uchiyama Nahoko,Hakamatsuka Takashi,Kouno Takanobu,Cano Emilio A.,Shimizu Motoki,Nishihara Masahiro

Abstract

AbstractAlthough yellow and orange petal colors are derived from carotenoids in many plant species, this has not yet been demonstrated for the order Caryophyllales, which includes carnations. Here, we identified a carnation cultivar with pale yellow flowers that accumulated carotenoids in petals. Additionally, some xanthophyll compounds were esterified, as is the case for yellow flowers in other plant species. Ultrastructural analysis showed that chromoplasts with numerous plastoglobules, in which flower-specific carotenoids accumulate, were present in the pale yellow petals. RNA-seq and RT-qPCR analyses indicated that the expression levels of genes for carotenoid biosynthesis and esterification in pale yellow and pink petals (that accumulate small amounts of carotenoids) were similar or lower than in green petals (that accumulate substantial amounts of carotenoids) and white petals (that accumulate extremely low levels of carotenoids). Pale yellow and pink petals had a considerably lower level of expression of genes for carotenoid degradation than white petals, suggesting that reduced degradation activity caused accumulation of carotenoids. Our results indicate that some carnation cultivars can synthesize and accumulate esterified carotenoids. By manipulating the rate of biosynthesis and esterification of carotenoids in these cultivars, it should be feasible to produce novel carnation cultivars with vivid yellow flowers.

Funder

“Strategic program on agricultural research and innovation”, Ministry of Agriculture, Forestry and Fisheries, Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3