Non-contact characterization of compound optical elements using reflectance confocal microscopy, low-coherence interferometry, and computational ray-tracing

Author:

El-Haddad Mohamed T.,Tao Yuankai K.

Abstract

AbstractAdvances in microscopy have enabled us to see at unprecedented depths and resolutions, even breaking the diffraction-limit by several fold. These improvements have come at the expense of system complexity with microscopes routinely employing multiple objective lenses and custom optical relays. Optimal system design is paramount for imaging performance, but research systems are limited by the use of commercial components because optical prescriptions are often inaccessible. System performance can be further degraded when these components are implemented in nonstandard configurations outside of manufacturer specifications. Here, we describe a method for characterization of compound optical elements including curvatures, material and air-gap thicknesses, and glass types. We present validation data for doublets and a commercial broadband scan lens. Our method is both non-contact and non-destructive, and we believe it addresses a unique gap in optical design that may be extended to broad applications in both research and industrial manufacturing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3