Long-term continuous monitoring of methane emissions at an oil and gas facility using a multi-open-path laser dispersion spectrometer

Author:

IJzermans Rutger,Jones Matthew,Weidmann Damien,van de Kerkhof Bas,Randell David

Abstract

AbstractA method for methane emissions monitoring at industrial facility level was developed based on a high precision multi-open-path laser dispersion spectrometer combined with Bayesian analysis algorithms using Monte Carlo Markov Chain (MCMC) inference. From the methane path-averaged concentrations spatially distributed over the facility under study, together with the wind vector, the analysis allows detection, localization and quantification of fugitive methane emissions. This paper describes the very first long term (3 months), continuous (24 h/7 days) deployment of this monitoring system at an operational gas processing and distribution facility. The continuous monitoring system, made of the combination of the open-path high-precision (<10 ppb) methane concentration analyser and the data analysis method, was evaluated with controlled releases of methane of about 5 kg/h for short periods of time (30–60 min). Quantification was successful, with actual emission rates lying well within the quoted uncertainty ranges. Source localisation was found to lack accuracy, with biases of 30–50 m in the direction of the line of sight of the spectrometer, due to the short duration of the controlled releases, the limited wind vector diversity, and complications from air flows around buildings not accounted for by the transport model. Using longer-term data from the deployment, the MCMC algorithm led to the identification of unexpected low intensity persistent sources (<1 kg/h) at the site. Localisation of persistent sources was mostly successful at equipment level (within ~20 m) as confirmed by a subsequent survey with an optical gas imaging (OGI) camera. Quantification of these individual sources was challenging owing to their low intensity, but a consistent estimate of the total methane emission from the facility could be derived using two different inference approaches. These results represent a stepping stone in the development of continuous monitoring systems for methane emissions, pivotal in driving greenhouse gas reduction from industrial facilities. The demonstrated continuous monitoring system gives promising performance in early detection of unexpected emissions and quantification of potentially time-varying emissions from an entire facility.

Funder

Science and Technology Facilities Council

Publisher

Springer Science and Business Media LLC

Reference26 articles.

1. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

2. Nisbet, E. G. et al. Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris agreement. Glob. Biogeochem. Cycles 33, 318–342. https://doi.org/10.1029/2018GB006009 (2019).

3. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623. https://doi.org/10.5194/essd-12-1561-2020 (2020).

4. Peng, S. et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612, 477–482. https://doi.org/10.1038/s41586-022-05447-w (2022).

5. United Nations Environment Programme and Climate and Clean Air Coalition. Global Methane Assessment Benefits and Costs of Mitigating Methane Emissions (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3