Steel slags for enhanced removal of landfill leachate in a three-dimensional electrochemical oxidation system

Author:

Nengzi Lichao,Cao Rui,Qiu Yong,Meng Lin,Hailai Wujia,Li Haitao,Qiu Guanglei

Abstract

AbstractIn this study, a three-dimensional electrochemical oxidation system, with steel slags as particle electrodes, was applied to deal with landfill leachate. The characteristics of particle electrodes were investigated by scanning electron microscope (SEM), X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) measurements. It was found that the steel slag exhibited rough and irregular surface and mainly consisted of SiO2 (Quartz), which indicated the enhanced absorbed and electroconducted abilities. Subsequently, comparative degradation tests between two-dimensional (2D) and three-dimensional (3D) electrochemical oxidation systems were carried out and results indicated removal efficiencies of COD. Moreover, NH4+-N from landfill leachate in 3D system was greatly improved compared with that of 2D system. Besides, operating conditions were also optimized to interelectrode distance of 1 cm, current density of 20 mA·cm−2, initial pH value of 4.4 and steel slag concentration of 0.30 g·mL−1, all of which were determined to guarantee excellent landfill leachate removal efficiency. In addition, a possible removal mechanism for this system was proposed. The introduction of steel slag particle electrodes in three-dimensional electrochemical oxidation system implied the concept for “using waste to treat waste”, providing a workable way in pollutant elimination.

Funder

the Science and Technology Plan to Focus on Research and Development in the Liangshan Prefecture

a doctoral research project at Xichang University

the Science and Technology Project of the city of Xichang

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3