Learning hyperparameter predictors for similarity-based multidisciplinary topology optimization

Author:

Bujny Mariusz,Yousaf Muhammad Salman,Zurbrugg Nathan,Detwiler Duane,Menzel Stefan,Ramnath Satchit,Rios Thiago,Duddeck Fabian

Abstract

AbstractTopology optimization (TO) plays a significant role in industry by providing engineers with optimal material distributions based exclusively on the information about the design space and loading conditions. Such approaches are especially important for current multidisciplinary design tasks in industry, where the conflicting criteria often lead to very unintuitive solutions. Despite the progress in integrating manufacturing constraints into TO, one of the main factors restricting the use of TO in practice is the users’ limited control of the final material distribution. To address this problem, recently, a universal methodology for enforcing similarity to reference structures in various TO methods by applying scaling of elemental energies was proposed. The method, however, requires an expensive hyperparameter sampling, which involves running multiple TO processes to find the design of a given similarity to a reference structure. In this article, we propose a novel end-to-end approach for similarity-based TO, which integrates a machine learning model to predict the hyperparameters of the method, and provide the engineer, at minimal computational cost, with a design satisfying multidisciplinary criteria expressed by the similarity to a reference. The training set for the model is generated based on an academic linear elastic problem, but the model generalizes well to both nonlinear dynamic crash and industrial-scale TO problems. We show the latter by applying the proposed methodology to a real-world multidisciplinary TO problem of a car hood frame, which demonstrates the usefulness of the approach in industrial settings.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3