Evaluation of deep learning models in contactless human motion detection system for next generation healthcare

Author:

Song Yukai,Taylor William,Ge Yao,Usman Muhammad,Imran Muhammad Ali,Abbasi Qammer H.

Abstract

AbstractRecent decades have witnessed the growing importance of human motion detection systems based on artificial intelligence (AI). The growing interest in human motion detection systems is the advantages of automation in the monitoring of patients remotely and giving warnings to doctors promptly. Currently, wearable devices are frequently used for human motion detection systems. However, such devices have several limitations, such as the elderly not wearing devices due to lack of comfort or forgetfulness and/or battery limitations. To overcome the problems of wearable devices, we propose an AI-driven human motion detection system (deep learning-based system) using channel state information (CSI) extracted from Radio Frequency (RF) signals. The main contribution of this paper is to improve the performance of the deep learning models through techniques, including structure modification and dimension reduction of the original data. In this work, We firstly collected the CSI data with the center frequency 5.32 GHz and implemented the structure of the basic deep learning network in our previous work. After that, we changed the basic deep learning network by increasing the depth, increasing the width, adapting some advanced network structures, and reducing dimensions. After finishing those modifications, we observed the results and analyzed how to further improve the deep learning performance of this contactless AI-enabled human motion detection system. It can be found that reducing the dimension of the original data can work better than modifying the structure of the deep learning model.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3