Sediment core analysis using artificial intelligence

Author:

Di Martino Andrea,Carlini Gianluca,Castellani Gastone,Remondini Daniel,Amorosi Alessandro

Abstract

AbstractSubsurface stratigraphic modeling is crucial for a variety of environmental, societal, and economic challenges. However, the need for specific sedimentological skills in sediment core analysis may constitute a limitation. Methods based on Machine Learning and Deep Learning can play a central role in automatizing this time-consuming procedure. In this work, using a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age that reflect a wide spectrum of continental to shallow-marine depositional environments, we outline a novel deep-learning-based approach to perform automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. To optimize the interpretation process and maximize scientific value, we use six sedimentary facies associations as target classes in lieu of ineffective classification methods based uniquely on lithology. We propose an automated model that can rapidly characterize sediment cores, allowing immediate guidance for stratigraphic correlation and subsurface reconstructions.

Funder

Ministero dell'Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference59 articles.

1. Martinson, D. G. et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27, 1–29 (1987).

2. Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).

3. Mitchum, R. M. Jr., Vail, P. R. & Thompson, S. I. Seismic stratigraphy and global changes of sea level, part 2: The depositional sequence as a basic unit for stratigraphic analysis. In Seismic Stratigraphy—Applications to Hydrocarbon Exploration Vol. 26 (ed. Payton, C. E.) (American Association of Petroleum Geologists, 1977).

4. Posamentier, H. W., Jervey, M. T. & Vail, P. R. Eustatic controls on clastic deposition I—conceptual framework. In Sea-Level Changes: An Integrated Approach Vol. 42 (eds Wilgus, C. K. et al.) (SEPM Special Publication, 1988).

5. Neal, J. & Abreu, V. Sequence stratigraphy hierarchy and the accommodation succession method. Geology 37, 779–782 (2009).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3