Machine learning intelligent based hydromagnetic thermal transport under Soret and Dufour effects in convergent/divergent channels: a hybrid evolutionary numerical algorithm

Author:

Aslam Muhammad Naeem,Shaukat Nadeem,Riaz Arshad,Khan Ilyas,Niazai Shafiullah

Abstract

AbstractIn this research, we analyze the complex dynamics of hydro-magnetic flow and heat transport under Sorent and Dofour effects within wedge-shaped converging and diverging channels emphasizing its critical role in conventional system design, high-performance thermal equipment. We utilized artificial neural networks (ANNs) to investigation the dynamics of the problem. Our study centers on unraveling the intricacies of energy transport and entropy production arising from the pressure-driven flow of a non-Newtonian fluid within both convergent and divergent channel. The weights of ANN based fitness function ranging from − 10 to 10. To optimize the weights and biases of artificial neural networks (ANNs), employ a hybridization of advanced evolutionary optimization algorithms, specifically the artificial bee colony (ABC) optimization integrated with neural network algorithms (NNA). This approach allows us to identify and fine-tune the optimal weights within the neural network, enabling accurate prediction. We compare our results against the established different analytical and numerical methods to assess the effectiveness of our approach. The methodology undergoes a rigorous evaluation, encompassing multiple independent runs to ensure the robustness and reliability of our findings. Additionally, we conduct a comprehensive analysis that includes metrics such as mean squared error, minimum values, maximum values, average values, and standard deviation over these multiple independent runs. The minimum fitness function value is 1.32 × 10−8 computed across these multiple runs. The absolute error, between the HAM and machine learning approach addressed ranging from 3.55 × 10−7 to 1.90 × 10−8. This multifaceted evaluation ensures a thorough understanding of the performance and variability of our proposed approach, ultimately contributing to our understanding of entropy management in non-uniform channel flows, with valuable implications for diverse engineering applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3