Author:
Ballhause Tobias Malte,Jiang Shan,Xie Weixin,Sevecke Jan,Dowling Christine,Dust Tobias,Brandt Sabine,Mertens Peter R.,Yorgan Timur Alexander,Schinke Thorsten,Frosch Karl-Heinz,Baranowsky Anke,Keller Johannes
Abstract
AbstractNotch signaling regulates cell fate in multiple tissues including the skeleton. Hajdu–Cheney-Syndrome (HCS), caused by gain-of-function mutations in the Notch2 gene, is a rare inherited disease featuring early-onset osteoporosis and increased risk for fractures and non-union. As the impact of Notch2 overactivation on fracture healing is unknown, we studied bone regeneration in mice harboring a human HCS mutation. HCS mice, displaying high turnover osteopenia in the non-fractured skeleton, exhibited only minor morphologic alterations in the progression of bone regeneration, evidenced by static radiological and histological outcome measurements. Histomorphometry showed increased osteoclast parameters in the callus of HCS mice, which was accompanied by an increased expression of osteoclast and osteoblast markers. These observations were accompanied by inferior biomechanical stability of healed femora in HCS mice. Together, our data demonstrate that structural indices of bone regeneration are normal in HCS mice, which, however, exhibit signs of increased callus turnover and display impaired biomechanical stability of healed fractures.
Funder
Thorsten Schinke
Universitätsklinikum Hamburg-Eppendorf (UKE)
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献