Author:
Ahmad Furqan,Abbassi Fethi,Ul-Islam Mazhar,Jacquemin Frédéric,Hong Jung-Wuk
Abstract
AbstractIn order to elucidate the hygroscopic effects on impact-resistance of carbon fiber/epoxy quasi-isotropic composite plates, low-velocity impact tests are conducted on dry and hygroscopically conditioned plates, respectively, under identical configurations. For the impact tests, plates were immersed in the hot water at 80 °C to absorb a different amount of moisture content (MC). Experimental results reveal that the presence of the MC plays a pivotal role by improving the impact-resistance of composite plates. Plates with higher percentage of MC could behave elastically to a larger strain, yielding larger deflection under impact loading. From SEM fractographies, it is observed that small disbanding grows at the interface of epoxy and carbon fiber due to absorbed MC. After absorbing MC, most of impact energy is dissipated in hygroscopic conditioned composite plates through elastic deformation and overall less damage is induced in wet composite plates compare to the dry plate. We can postulate that the presence of MC increases the elastic limit as well as ductility of the epoxy by promoting chain segmental mobility of the polymer molecules, which eventually leads to the enhancement of the impact-resistance of wet quasi-isotropic composite plates in comparison with the dry plate.
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献