Ligand modulation of the conformational dynamics of the A2A adenosine receptor revealed by single-molecule fluorescence

Author:

Fernandes Dennis D.,Neale Chris,Gomes Gregory-Neal W.,Li Yuchong,Malik Aimen,Pandey Aditya,Orazietti Alexander P.,Wang Xudong,Ye Libin,Scott Prosser R.,Gradinaru Claudiu C.

Abstract

AbstractG protein-coupled receptors (GPCRs) are the largest class of transmembrane proteins, making them an important target for therapeutics. Activation of these receptors is modulated by orthosteric ligands, which stabilize one or several states within a complex conformational ensemble. The intra- and inter-state dynamics, however, is not well documented. Here, we used single-molecule fluorescence to measure ligand-modulated conformational dynamics of the adenosine A2A receptor (A2AR) on nanosecond to millisecond timescales. Experiments were performed on detergent-purified A2R in either the ligand-free (apo) state, or when bound to an inverse, partial or full agonist ligand. Single-molecule Förster resonance energy transfer (smFRET) was performed on detergent-solubilized A2AR to resolve active and inactive states via the separation between transmembrane (TM) helices 4 and 6. The ligand-dependent changes of the smFRET distributions are consistent with conformational selection and with inter-state exchange lifetimes ≥ 3 ms. Local conformational dynamics around residue 2296.31 on TM6 was measured using fluorescence correlation spectroscopy (FCS), which captures dynamic quenching due to photoinduced electron transfer (PET) between a covalently-attached dye and proximal aromatic residues. Global analysis of PET-FCS data revealed fast (150–350 ns), intermediate (50–60 μs) and slow (200–300 μs) conformational dynamics in A2AR, with lifetimes and amplitudes modulated by ligands and a G-protein mimetic (mini-Gs). Most notably, the agonist binding and the coupling to mini-Gs accelerates and increases the relative contribution of the sub-microsecond phase. Molecular dynamics simulations identified three tyrosine residues (Y112, Y2887.53, and Y2907.55) as being responsible for the dynamic quenching observed by PET-FCS and revealed associated helical motions around residue 2296.31 on TM6. This study provides a quantitative description of conformational dynamics in A2AR and supports the idea that ligands bias not only GPCR conformations but also the dynamics within and between distinct conformational states of the receptor.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3